返回列表页

以后都不要再问HTCC,LTCC,DBC,DPC,AMB都是什么了!

AMB陶瓷基板

陶瓷基板是指铜箔在高温下直接键合到氧化铝(Al2O3)或氮化铝(AlN)陶瓷基片表面( 单面或双面)上的特殊工艺板。所制成的超薄复合基板具有优良电绝缘性能,高导热特性,优异的软钎焊性和高的附着强度,并可像PCB板一样能刻蚀出各种图形,具有很大的载流能力。因此,陶瓷基板已成为大功率电力电子电路结构技术和互连技术的基础材料。

陶瓷基板

按制造工艺分类陶瓷基板主要分为平面陶瓷基板和三维陶瓷基板两大类。

主要的平面陶瓷基板工艺可分为薄膜陶瓷基板(TFC)、厚膜印刷陶瓷基板(TPC)、直接键合铜陶瓷基板(DBC)、活性金属焊接陶瓷基板(AMB)、直接电镀铜陶瓷基板(DPC)。
主要的三维陶瓷基板分为高温共烧陶瓷基板(HTCC)和低温共烧陶瓷基板(LTCC)。


现阶段较普遍的陶瓷散热基板种类有:HTCC,LTCC,DBC,DPC,AMB等。

  • HTCC(High Temperature Co-fired Ceramic,高温共烧陶瓷):属于较早发展的技术,是采用陶瓷与高熔点的W、Mo等金属图案进行共烧获得的多层陶瓷基板。但由于烧结温度较高使其电极材料的选择受限,且制作成本相对昂,促使了LTCC的发展。
  • LTCC(Low Temperature Co-fired Ceramic,低温共烧陶瓷):LTCC技术共烧温度降至约850℃,通过将多个印有金属图案的陶瓷膜片堆叠共烧,实现电路在三维空间布线。
  • DPC(Direct Plating Copper,直接镀铜):是在陶瓷薄膜工艺加工基础上发展起来的陶瓷电路加工工艺。以陶瓷作为线路的基板,采用溅镀工艺于基板表面复合金属层,并以电镀和光刻工艺形成电路。
  • DBC(Direct Bonded Copper,直接覆铜):通过热熔式粘合法,在高温下将铜箔直接烧结到Al2O3和AlN陶瓷表面而制成复合基板。
  • AMB(Active Metal Brazing,活性金属钎焊):AMB是在DBC技术的基础上发展而来的,在 800℃左右的高温下,含有活性元素 Ti、Zr 的 AgCu 焊料在陶瓷和金属的界面润湿并反应,从而实现陶瓷与金属异质键合。

其中,HTCC\LTCC都属于烧结工艺,成本都会较高。而DBC与DPC则为国内近年来才开发成熟,且能量产化的专业技术,DBC是利用高温加热将Al2O3与Cu板结合,其技术瓶颈在于不易解决Al2O3与Cu板间微气孔产生之问题,这使得该产品的量产能量与良率受到较大的挑战,而DPC技术则是利用直接镀铜技术,将Cu沉积于Al2O3基板之上,其工艺结合材料与薄膜工艺技术,其产品为近年最普遍使用的陶瓷散热基板。然而其材料控制与工艺技术整合能力要求较高,这使得跨入DPC产业并能稳定生产的技术门槛相对较高。
与传统产品相比,AMB陶瓷基板是靠陶瓷与活性金属焊膏在高温下进行化学反应来实现结合,因此其结合强度更高,可靠性更好,极适用于连接器或对电流承载大、散热要求高的场景。尤其是新能源汽车、轨道交通、风力发电、光伏、5G通信等对性能要求苛刻的电力电子及大功率电子模块对AMB陶瓷覆铜板需求巨大。
按照材料分类陶瓷基板主要材料包括氧化铍(BeO)、氧化铝(Al2O3)、氮化铝(AlN)和氮化硅(Si3N4)等。

陶瓷粉体是影响陶瓷基板物理、力学性能的关键因素。粉体的纯度、粒度、物相、氧含量等会对陶瓷基板的热导率、力学性能产生重要影响,其特性也决定了基板成型工艺、烧结工艺的选择。

BeO陶瓷具有较高的热导率,但是其毒性和高生产成本限制了它的生产和应用。
Al2O3陶瓷基板因其价格低廉、耐热冲击性好已被广泛应用,但因其热导率相对较低和热膨胀率不匹配的问题,已无法完全满足功率器件向大功率、小型化方向发展的趋势。
AlN和Si3N4陶瓷基板在膨胀系数及热导率方面的优势被认为是未来的发展方向。Si3N4的挠曲强度更是得到大幅改善, 设计师们也因此而受益;其断裂韧性甚至超过了氧化锆掺杂陶瓷,在 90 W/mK 的热导率下达到了6.5~7 MPa/√m。


陶瓷pcb电路板|深圳市金瑞欣特种电路技术有限公司

金瑞欣——专业的陶瓷电路板制造商

通过公司研发团队的不懈努力,现已成功研发微小孔板、高精密板、难度板、微型化板、围坝板等,具备DPC、DBC、HTCC、LTCC等多种陶瓷生产技术,以便为更多需求的客户服务,开拓列广泛的市场。

在线咨询在线咨询
咨询热线 4000-806-106

© 2018 深圳市金瑞欣特种电路技术有限公司版权所有    技术支持:深度网

返回顶部