返回列表页

金属与陶瓷封接的关键性工艺技术

陶瓷金属化

                                                金属与陶瓷封接的关键性工艺技术

金属的热膨胀系数较大、陶瓷的热膨胀系数小,要实现封装有一定的难度,随着技术的成熟,金属和陶瓷封接的关键性技术成熟。应用也更加广泛,今天小编就来分享一下是什么关键词技术实现陶瓷与金属的封接成功。

一,陶瓷与金属连接器件的市场应用

陶瓷与金属的连接件在新能源汽车、电子电气、半导体封装和IGBT模块等领域有着广泛的应用,其产品主要有陶瓷结构件和陶瓷基板,因市场需求的增大和新材料的不断涌现,诸如陶瓷继电器、陶瓷密封连接器、陶瓷基板等系列产品大规模实现产业化,因此,具有高强度、高气密性、高可靠性的陶瓷与金属的封接工艺至关重要。

通讯高频陶瓷基板.jpg

二,陶瓷与金属封接离不开金属化

高导热陶瓷基板的应用离不开金属化,在国际上,以德国贺利氏(Heraeus)集团公司为主生产高性能的DCB-Al2O3(直接键合铜的Al2O3陶瓷基板)和AMB-Si3N4(活性金属钎焊工艺的Si3N4陶瓷基板)、日本京瓷(Kyocera)作为世界500强企业和全球最大的高技术陶瓷公司,代表产品有大功率的LED用陶瓷封装壳等,这些都离不开陶瓷与金属的封接。

三,陶瓷与金属封接的技术难点

1、陶瓷的线膨胀系数小,而金属的线膨胀系数相对很大,导致接缝开裂。一般要很好处理金属中间层的热应力问题。

2、陶瓷本身的热导率低,耐热冲击能力弱。焊接时尽可能减小焊接部位及周围的温度梯度,焊后控制冷却速度。

3、大部分陶瓷导电性差,甚至不导电,很难用电焊的方法。

4、由于陶瓷材料具有稳定的电子配位,使得金属与陶瓷连接不太可能。需对陶瓷金属化处理或进行活性钎料钎焊。

5、由于陶瓷材料多为共价晶体,不易产生变形,经常发生脆性断裂。目前大多利用中间层降低焊接温度,间接扩散法进行焊接。

6、陶瓷与金属焊接的结构设计与普通焊接有所区别,通常分为平封结构、套封结构、针封结构和对封结构,其中套封结构效果最好,这些接头结构制作要求都很高。

高频陶瓷基板.jpg

      金属与陶瓷封接的条件要求:

良好的陶瓷与金属封接,其封接处应满足如下要求: 

1.具有良好的真空气密性,印使在高温时也不应丧失;

2.具有一定的机械强度;

3.在长时间高于工作温度的条件下,其电气性能与机械性能应保持不变;

4.能承受住急剧的温度变化;

5.工艺简单,适于成批生产;

6.封接处尺寸的公差应很小。

三,陶瓷金属化机理和工艺流程

1,陶瓷金属化机理

陶瓷金属化的机理较为复杂,涉及到几种化学和物理反应、物质的塑性流动、颗粒重排等。金属化层中的氧化物、非金属氧化物等各种物质在不同烧结阶段中发生不同的化学反应和物质扩散迁移。随温度的升高,各物质发生反应形成中间化合物,达到共同的熔点时形成液相,液态的玻璃相有一定的粘性,同时产生塑性流动,之后颗粒在毛细管的作用下发生重排,在表面能的驱动下原子或分子发生扩散迁移,晶粒长大,气孔逐渐缩小并且消失,达到金属化层的致密化。

2,陶瓷金属化工艺

陶瓷金属化的工艺流程包括:

第一步:基体预处理。采用金刚石研磨膏将无压烧结的陶瓷抛至光学平滑,保证表面粗糙度≤1.6m,将基材放入丙酮、酒精中,超声波常温清洗20min。

第二步:金属化浆料配制。按照金属化配方称量原料,球磨一定时间后制成一定粘度的金属化浆料。

第三步:涂料、烘干。利用丝网印刷技术在陶瓷基体上涂上浆料,浆料厚度要适宜,太薄焊料易流入金属化层,太厚不利于组分迁移,然后将上浆后的基体在烘箱中干燥。

第四步:热处理。将烘干后的基体放入还原性气氛中烧结形成金属化层。

双面氧化铝陶瓷覆铜板板厚0.635 铜厚105um.jpg

四,陶瓷与金属封接关键技术5大关键技术

 陶瓷金属化的具体方法

陶瓷金属化常用的制备方法主要有Mo-Mn法、活化Mo-Mn法、活性金属钎焊法、直接覆铜法(DBC)、磁控溅射法。

1、Mo-Mn法

Mo-Mn法是以难熔金属粉Mo为主,再加入少量低熔点Mn的金属化配方,加入粘结剂涂覆到Al2O3陶瓷表面,然后烧结形成金属化层。传统Mo-Mn法的缺点在于烧结温度高,能源消耗大,且配方中无活化剂的参与导致封接强度低。

2、活化Mo-Mn法

活化Mo-Mn法是在传统Mo-Mn法基础上进行的改进,改进的方向主要有添加活化剂和用钼、锰的氧化物或盐类代替金属粉。这两类改进方法都是为了降低金属化温度。

活化Mo-Mn法的缺点是工艺复杂、成本高,但其结合牢固,能极大改善润湿性,所以仍是陶瓷-金属封接工艺中发明最早、最成熟、应用范围最广的工艺。

3、活性金属钎焊法

活性金属钎焊法也是一种应用较广泛的陶瓷-金属封接工艺,它比Mo-Mn法的发展晚10年,特点是工序少,陶瓷-金属的封接只需要一次升温过程就能完成。钎焊合金含有活性元素,如Ti、Zr、Hf和Ta,添加的活性元素与Al2O3反应,在界面处形成具有金属特性的反应层,这种方法可以很容易地适应大规模生产,与钼-锰工艺相比,这种方法相对简单经济。

活性金属钎焊法缺点在于活性钎料单一,导致其应用受到一定限制,且不适于连续生产,仅适合大件、单件生产或小批量生产。

4、直接敷铜法(Directbondedcopper,DBC)

DBC是在陶瓷表面(主要是Al2O3和AlN)键合铜箔的一种金属化方法,它是随着板上芯片(COB)封装技术的兴起而发展出来的一种新型工艺。其基本原理是在Cu与陶瓷之间引进氧元素,然后在1065~1083℃时形成Cu/O共晶液相,进而与陶瓷基体及铜箔发生反应生成CuAlO2或Cu(AlO2)2,并在中间相的作用下实现铜箔与基体的键合。

5、磁控溅射法DPC)

磁控溅射法是物理气相沉积的一种,是通过磁控技术在衬底上沉积多层膜,具有优于其他沉积技术的优点,如更好的附着力,更少的污染以及改善沉积样品的结晶度,获得高质量的薄膜。

此法所得金属化层很薄,能保证零件尺寸的精度,但它不宜对不耐高温的陶瓷实行金属化(如压电陶瓷以及单晶)。

陶瓷覆铜板

陶瓷金属化的影响因素

1、金属化配方

这是实现陶瓷金属化的前提,需要对其配方做出周密、科学的设计。

2、金属化温度及保温时间

影响陶瓷金属化的另一个关键因素是金属化烧结温度和保温时间。金属化温度可分为以下四种工艺:温度超过1600℃以上的为特高温,1450~1600℃的为高温,1300~1450℃的属于中温,低于1300℃的则为低温。适当的烧结温度是必须的,温度过低会造成玻璃相没有产生扩散迁移,过高则金属化强度比较差,金属化层很容易从陶瓷上脱落造成封接的失效。

3、金属化层显微结构

金属化工艺决定金属化层的显微结构,显微结构又直接影响焊接体的最终性能。想要获得良好的焊接性能,首先金属化层应为高结合强度的致密薄膜。若金属化层的显微结构中各区域层次分明,且任一界面处都没有观察到连续的脆性金属化合物,就会减少脆性和裂纹扩展的几率,界面紧密裂纹少,有利于减少焊料渗透,则说明该金属化层致密性好,结合强度相对较高。

4、其他因素

还有很多影响陶瓷金属化程度的因素需要注意,如粉料粒度与合理级配的影响,粉末过细,表面能大,易形成团聚,这会影响涂层的平整性;粉末过粗,表面能降低,导致烧结温度提高,影响烧结质量。此外,还有涂覆方式以及涂覆的厚度等对陶瓷金属化也会有很大影响。

     以上是关于金属和陶瓷封接关键性介绍,相信您对陶瓷金属化工艺有了更加深刻的认知,具体使用哪种工艺制作一方面需要根据客户的定制要求去加工,更多关于陶瓷金属化工艺的问题可以咨询金瑞欣特种电路,金瑞欣陶瓷基板加工三年专项经验,十年多PCB行业经验,精通陶瓷基板金属化工艺,欢迎咨询。

   

 

 

 


陶瓷pcb电路板|深圳市金瑞欣特种电路技术有限公司

金瑞欣——专业的陶瓷电路板制造商

通过公司研发团队的不懈努力,现已成功研发微小孔板、高精密板、难度板、微型化板、围坝板等,具备DPC、DBC、HTCC、LTCC等多种陶瓷生产技术,以便为更多需求的客户服务,开拓列广泛的市场。

在线咨询在线咨询
咨询热线 4000-806-106

© 2018 深圳市金瑞欣特种电路技术有限公司版权所有    技术支持:深度网

返回顶部